Local Energy Gap in Deformed Carbon Nanotubes
نویسندگان
چکیده
منابع مشابه
Local Energy Gap in Deformed Carbon Nanotubes
The effects of graphite surface geometrical deformation on the dynamics of conducting electrons are investigated theoretically. The analysis is performed within the framework of a deformation-induced gauge field and corresponding deformation-induced magnetic field. It is shown that the latter gives a local energy gap along the axis of a deformed nanotube. We compare our energy gap results with ...
متن کاملNarrow-gap Luttinger liquid in carbon nanotubes.
Electron interactions reinforce minigaps induced in metallic nanotubes by an external field and turn the gap field dependence into a universal power law. An exactly solvable Gross-Neveau model with an SU(4) symmetry is derived for neutral excitations near half filling. Charge excitations, described by a sine-Gordon perturbation of Luttinger liquid theory, are composite solitons formed by the ch...
متن کاملCarbon Nanotubes for Energy Applications
The energy crisis during the 1970s sparked the development of renewable energy sources and energy conservation measures. As supply eventually met demand, these programs were scaled back. Ten years later, the hazards of pollution led to work on minimisation and reversal of the environmental impact of fossil fuel extraction, transport and consumption [1]. The United States Department of Energy pr...
متن کاملStoring elastic energy in carbon nanotubes
The potential performance of carbon nanotubes (CNTs) as springs for elastic energy storage is evaluated. Models are used to determine an upper bound on the energy density that can be stored in defect-free individual CNTs and in assemblies of such CNTs. The models reveal that optimal energy density may be achieved in small-diameter single-walled CNTs loaded in tension, with a maximum theoretical...
متن کاملAnalysis of band-gap formation in squashed armchair carbon nanotubes
The electronic properties of deformed armchair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, deforming path can be divided into three regimes. In the first regime, the nanotube deforms with negligible force. In the second one, there is significantly more resistance to deforming with the force be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 2005
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp.113.463